Blind image super-resolution (Blind-SR) aims to recover a high-resolution (HR) image from its corresponding low-resolution (LR) input image with unknown degradations. Most of the existing works design an explicit degradation estimator for each degradation to guide SR. However, it is infeasible to provide concrete labels of multiple degradation combinations (\eg, blur, noise, jpeg compression) to supervise the degradation estimator training. In addition, these special designs for certain degradation, such as blur, impedes the models from being generalized to handle different degradations. To this end, it is necessary to design an implicit degradation estimator that can extract discriminative degradation representation for all degradations without relying on the supervision of degradation ground-truth. In this paper, we propose a Knowledge Distillation based Blind-SR network (KDSR). It consists of a knowledge distillation based implicit degradation estimator network (KD-IDE) and an efficient SR network. To learn the KDSR model, we first train a teacher network: KD-IDE$_{T}$. It takes paired HR and LR patches as inputs and is optimized with the SR network jointly. Then, we further train a student network KD-IDE$_{S}$, which only takes LR images as input and learns to extract the same implicit degradation representation (IDR) as KD-IDE$_{T}$. In addition, to fully use extracted IDR, we design a simple, strong, and efficient IDR based dynamic convolution residual block (IDR-DCRB) to build an SR network. We conduct extensive experiments under classic and real-world degradation settings. The results show that KDSR achieves SOTA performance and can generalize to various degradation processes. The source codes and pre-trained models will be released.
translated by 谷歌翻译
基于CNN的大多数超分辨率(SR)方法假设降解是已知的(\ eg,bicubic)。当降解与假设不同时,这些方法将遭受严重的性能下降。因此,一些方法试图通过多种降解的复杂组合来培训SR网络,以涵盖实际的降解空间。为了适应多个未知降解,引入显式降解估计器实际上可以促进SR性能。然而,以前的显式降解估计方法通常可以通过对地面模糊内核的监督来预测高斯的模糊,并且估计错误可能导致SR失败。因此,有必要设计一种可以提取隐式歧视性降解表示的方法。为此,我们提出了一个基于元学习的区域退化意识SR网络(MRDA),包括元学习网络(MLN),降级提取网络(DEN)和区域退化意识SR Network(RDAN)。为了处理缺乏地面污染的降解,我们使用MLN在几次迭代后快速适应特定的复合物降解并提取隐式降解信息。随后,教师网络MRDA $ _ {T} $旨在进一步利用MLN为SR提取的降解信息。但是,MLN需要在配对的低分辨率(LR)和相应的高分辨率(HR)图像上进行迭代,这在推理阶段不可用。因此,我们采用知识蒸馏(KD)来使学生网络学会直接提取与LR图像的老师相同的隐式退化表示(IDR)。
translated by 谷歌翻译
我们介绍了第一个分布式优化算法,该算法具有懒惰的通信,以进行协作几何估计,现代协作同时本地化和映射(SLAM)和结构 - 莫特 - 莫蒂(SFM)应用程序的骨干。我们的方法允许代理通过融合单个观察结果在中央服务器上合作重建共享的几何模型,但无需传输有关代理本身(例如其位置)的潜在敏感信息。此外,为了减轻迭代优化期间的通信负担,我们设计了一组通信触发条件,使代理能够选择性地上传针对性的本地信息的目标子集,该信息对全球优化有用。因此,我们的方法可实现大量的沟通减少,对优化性能的影响最小。作为我们的主要理论贡献,我们证明我们的方法以全球sublinear收敛速率收敛到一阶关键点。关于合作SLAM和SFM数据集的捆绑调整问题的数值评估表明,我们的方法在现有的分布式技术方面具有竞争力,同时达到了多达78%的总沟通减少。
translated by 谷歌翻译
本文提出了Kimera-Multi,第一个多机器人系统,(i)是强大的,并且能够识别和拒绝由感知混叠产生的不正确和内部机器人循环闭合,(ii)完全分布,仅依赖于本地(点对点)通信实现分布式本地化和映射,(iii)实时构建环境的全球一致的度量标准三维网状模型,其中网格的面部用语义标签注释。 Kimera-Multi由配备有视觉惯性传感器的机器人团队实现。每个机器人都构建了局部轨迹估计和使用Kimera的本地网格。当通信可用时,机器人基于一种基于新型分布式刻度非凸性算法发起分布式地点识别和鲁棒姿态图优化协议。所提出的协议允许机器人通过利用机器人间循环闭合而鲁棒到异常值来改善其局部轨迹估计。最后,每个机器人使用其改进的轨迹估计来使用网格变形技术来校正本地网格。我们在光逼真模拟,SLAM基准测试数据集中展示了Kimera-Multi,以及使用地机器人收集的靠户外数据集。真实和模拟实验都涉及长轨迹(例如,每个机器人高达800米)。实验表明,在鲁棒性和准确性方面,kimera-multi(i)优于现有技术,(ii)在完全分布的同时实现与集中式大满贯系统相当的估计误差,(iii)在通信带宽方面是显着的(iv)产生精确的公制语义3D网格,并且(v)是模块化的,也可以用于标准3D重建(即,没有语义标签)或轨迹估计(即,不重建3D网格)。
translated by 谷歌翻译
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.
translated by 谷歌翻译
Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
translated by 谷歌翻译
Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
We study the task of learning state representations from potentially high-dimensional observations, with the goal of controlling an unknown partially observable system. We pursue a direct latent model learning approach, where a dynamic model in some latent state space is learned by predicting quantities directly related to planning (e.g., costs) without reconstructing the observations. In particular, we focus on an intuitive cost-driven state representation learning method for solving Linear Quadratic Gaussian (LQG) control, one of the most fundamental partially observable control problems. As our main results, we establish finite-sample guarantees of finding a near-optimal state representation function and a near-optimal controller using the directly learned latent model. To the best of our knowledge, despite various empirical successes, prior to this work it was unclear if such a cost-driven latent model learner enjoys finite-sample guarantees. Our work underscores the value of predicting multi-step costs, an idea that is key to our theory, and notably also an idea that is known to be empirically valuable for learning state representations.
translated by 谷歌翻译
Video semantic segmentation (VSS) is beneficial for dealing with dynamic scenes due to the continuous property of the real-world environment. On the one hand, some methods alleviate the predicted inconsistent problem between continuous frames. On the other hand, other methods employ the previous frame as the prior information to assist in segmenting the current frame. Although the previous methods achieve superior performances on the independent and identically distributed (i.i.d) data, they can not generalize well on other unseen domains. Thus, we explore a new task, the video generalizable semantic segmentation (VGSS) task that considers both continuous frames and domain generalization. In this paper, we propose a class-wise non-salient region generalized (CNSG) framework for the VGSS task. Concretely, we first define the class-wise non-salient feature, which describes features of the class-wise non-salient region that carry more generalizable information. Then, we propose a class-wise non-salient feature reasoning strategy to select and enhance the most generalized channels adaptively. Finally, we propose an inter-frame non-salient centroid alignment loss to alleviate the predicted inconsistent problem in the VGSS task. We also extend our video-based framework to the image-based generalizable semantic segmentation (IGSS) task. Experiments demonstrate that our CNSG framework yields significant improvement in the VGSS and IGSS tasks.
translated by 谷歌翻译